Slow Learning and Rational Expectations

Lawrence Christiano

based on joint work with Martin Eichenbaum and Ben Johannsen

54th Annual Conference of the Money, Macro and Finance Society

September 7, 2023

Motivation

- In the past two decades, several events with little precedence occurred:
 - ▶ US Financial Crisis, European Sovereign Debt crisis, Covid, Ukraine, Climate Crisis.
- Our standard models assume rational expectations (RE)
 - Assumes people know a lot about the economy:
 - * what can happen, the associated probabilities, etc.
 - Maybe Looked OK during the Great Moderation.
 - Harder to justify in unprecedented situations.

What we Do

- Consider situation in which people don't have Rational Expectations and instead learn from observations as time passes.
 - ▶ For REE to be useful for policy analysis, require fast convergence to REE.
- Ask: What features of the economy determine speed of convergence to REE?
 - ► Use a reduced form example which suggests a simple *learning principle*:
 - * When expectations of a variable are partially self-fulfilling, then learning converges *slowly* to REE, if at all.
- Turn to a particular 'event without precedence':
 - ▶ The drop in *R* to its zero lower bound (ZLB) in 2009-2015.
- Ask: Is convergence fast enough for REE to be a useful laboratory in the ZLB?
 - Answer: No.
 - ▶ For the classic NK model, convergence is *extremely* slow in the ZLB.
 - Relate this result to the learning principle.

- Simple example:
 - Learning principle.
- New Keynesian analysis of shocks and policies in the ZLB using Eggertsson-Woodford (2003) model.
 - Government spending
 - ► Forward Guidance
 - Interpret results using learning principle.

Simple Example: REE

• Model analyzed in Bray and Savin (ECMA1986):

$$x_{t} = a + b\mathbb{E}_{t-1}x_{t} + \varepsilon_{t}, \ \varepsilon_{t} \sim iiN\left(0,\sigma^{2}
ight), \sigma^{2} < \infty$$

'Workhorse model' for learning (see, e.g., Evans and Honkapohja (2001)). • structures

- ullet We consider the following parameter values: $-\infty < b < 1$
 - When b < 0: Muth's (1961) version of Cobweb model,
 - when b > 0, Lucas (1973) 'aggregate supply model'
- Rational expectations equilibrium:

$$\mathbb{E}_{t-1}x_t = E_{t-1}x_t, \ x_t = \overbrace{\frac{a}{1-b}}^{\mu} + \varepsilon_t.$$

• In REE, $x_t \sim iiN(\mu, \sigma^2)$.

Simple Example: Learning

- Bayesian Learning about μ (assume people know the form of the REE process and value of σ^2)
 - ▶ In period 0, prior on μ is $N\left(\mu_0, \frac{\sigma^2}{\lambda_0}\right)$, where $\lambda_0 \ge 0$ is a measure of precision of prior.
 - In period t observe $x_1, ..., x_t$, so Bayes' rule implies posterior $N\left(\mu_t, \frac{\sigma^2}{\lambda_0 + t}\right)$ and

$$\mu_t = \mu_{t-1} + \frac{1}{\lambda_0 + t} \left(x_t - \mu_{t-1} \right)$$
$$x_t = a + b\mu_{t-1} + \varepsilon_t$$

- How people learn is a fundamental part of the law of motion of the system.
- Repeated substitution:

$$\mu_t = \frac{a}{1-b} + \sum_{j=1}^t \left\{ \frac{z_t}{z_j} \frac{\varepsilon_j}{\lambda_0 + j} \right\} + z_t \left(\mu_0 - \frac{a}{1-b} \right)$$

where

$$z_t = \prod_{j=1}^t (1 - b_j), \ b_j = rac{1 - b}{\lambda_0 + j}.$$

Simple Example: Convergence Questions

- does $\mu_t \rightarrow \mu = a/(1-b)$?
 - Yes for b < 1.
 - ▶ This result is known at least since Bray and Savin (1986).
- how fast does convergence occur?
 - potentially, very slowly.

A Feedback Loop and Speed of Convergence

• To understand convergence rate, recall data-generating process under learning:

$$x_t = \mathbf{a} + b\mu_{t-1} + \varepsilon_t$$
$$\mu_t = \mu_{t-1} + \frac{1}{\lambda_0 + t} \left(x_t - \mu_{t-1} \right)$$

- There is a *feedback loop* $\mu_{t-1} \rightarrow x_t \rightarrow \mu_t \rightarrow x_{t+1}...$
- If 1 > b > 0: feedback loop is positive and expectations are (partially) self-fulfilling.
 - * People slow to leave their initial prior, μ_0 .
- ▶ If *b* < 0 expectations self-defeating.
 - * People may be quick to shift away from μ_0 .
- Suggests speed of convergence may be a *decreasing* function of *b*.

Simple Example: Learning Might be Very Slow (or, Fast)

• Consider expected gap relative to REE, as fraction of initial gap:

$$z_t = \frac{E\left(\mu_t - \frac{a}{1-b}\right)}{\mu_0 - \frac{a}{1-b}} = f\left(t, \lambda_0, b\right).$$

How long does it take to close 2/3 of initial gap, $z_T = 1/3$?

• Answer $(\lambda_0 = 1)$:

Ь	0	0.5	0.75	0.85	0.95
Т	2	10	120	2500	4 billion

- We establish asymptotic properties, as $t \to \infty$, of various features of μ_t .
 - For example, $z_t \simeq \kappa t^{b-1}$, $\kappa \neq 0$ as $t \to \infty$, for b < 1.
- Learning principle:
 - positive feedback loop (b > 0): slow learning.
 - ▶ negative feedback loop (b < 0): relatively fast learning. </p>

Turning to New Keynesian Model

- Recursive Formulation of NK Model
- Results:
 - Convergence to REE under learning surprisingly (to us) slow in ZLB.
- Key findings:
 - ▶ When the ZLB model is binding, NK model corresponds to a *high-b economy*,
 - Absence of Taylor principle in ZLB implies a strong positive feedback loop in inflation expectations.
 - Convergence to a REE is very slow.
- When the ZLB doesn't bind, the NK model corresponds to a low *b* economy.
 - ► Taylor principle outside ZLB diminishes positive feedback loop in inflation expectations.
 - Convergence to REE is faster.

NK Model with Learning

- Simple closed economy, NK model without capital, flexible wages, Rotemberg-sticky prices.
 - ▶ Up to period 0, economy is in unique steady state REE with
 - \star $\beta = 1/(1 + \mathit{r_{ss}})$, ss ~ 'steady state'
 - * gross nominal interest rate, R > 1.
- In period 0, everyone discovers unexpectedly that r drops to $r_{\ell} < r_{ss}$ (Eggertsson-Woodford, 2003).
 - People know the law of motion of $r, r \in (r_{\ell}, r_{ss}), r_{ss}$ is an absorbing state and $P[r_{t+1} = r_{\ell}|r_t = r_{\ell}] = p$.
 - ▶ When economy reverts to absorbing state, $r = r_{ss}$, everyone understands we're back to unique steady state REE with R > 1.

Model

- What people in the model don't know:
 - how the economy will evolve over time during the ZLB.
 - the dynamic impact of government policies.
- People learn about these things as data come in.
 - Circular process: learning influenced by the data and data influenced by learning.
- Two ways that people learn:
 - Bayesian learning (also, least squares learning).
 - Constant gain learning.

Households

- Beginning of Period State Variables for h^{th} household, $h \in (0, 1)$:
 - b_h ~ stock of bonds acquired in previous period.
 - $r \sim$ discount rate observed at the beginning of the period.
 - Θ ~ parameters governing beliefs about density of *x*.
 - * $x = [C, \pi]$ ~ aggregate variables that allow people to deduce R (nominal interest rate), w (real wage), T (profits net of lump sum taxes)
 - * Density of x degenerate when $r = r_{ss}$, non-trivial with $r = r_{\ell}$.
- The h^{th} household forms plans for C_h , N_h , b'_h contingent on the not-yet-realized current value of x.

Household x-Contingent Plan

• For a range of values of $x = [C, \pi]$ the h^{th} household chooses C_h, N_h, b'_h to solve:

$$\max_{C_{h},N_{h},b_{h}^{'}} \{\log (C_{h}) - \frac{\chi}{2} (N_{h})^{2} + \frac{1}{1+r_{\ell}} \left[(1-p) V_{h}^{ss} (b_{h}^{'}) + p \mathbb{E} V_{h} (b_{h}^{'},\Theta^{'},x^{'}) \right] \},$$

subject to the budget constraint:

$$C_{h}+\frac{b_{h}^{\prime}}{R\left(x\right)}\leq\frac{b_{h}}{\pi\left(x\right)}+w\left(x\right)N_{h}+T\left(x\right),$$

where V_h and V_h^{ss} denote the value functions in case $r = r^{\ell}$ or $r = r^{ss}$ in the next period, respectively. \blacktriangleright EquilibriumFunction

- Here,
 - \mathbb{E} denotes the expectation operator over marginal data density of x', conditional on $r' = r_{\ell}$, Θ , x.
 - Θ' , next period's belief parameters constructed by combining Θ, x .

- Because they see the same aggregate data, firms and households have same beliefs about the distribution of $x = [C, \pi]$.
- People think that both elements of log x are independently drawn from a different Normal distribution.
 - > They are uncertain about the mean and variance of each Normal.
 - Their joint prior over the means and variances of C and π are (truncated) Normal inverse Wishart.
- The vector Θ denotes the parameters that characterize these prior distributions.

Evolution of Beliefs over Time

 In making their x-contingent decisions, people internalize that Θ' is a function of Θ and the observed value of x:

$$\Theta' = f\left(\Theta, x
ight)$$
 .

Here, f has an analytic representation for each of the three learning rules used.

- The people in our model are 'internally rational' in the sense of Adam and Marcet 2011.
 - > Actually, the slides present results for a short-cut that Cogley and Sargent call 'anticipated utility'.
- In period 0, Θ_0 are free parameters.

Household Value Function

• Value function satisfies the following fixed point property:

$$V_{h}\left(b_{h},\Theta,x
ight)=\max_{C_{h},N_{h},b_{h}^{\prime}}\left\{\log\left(C_{h}
ight)-rac{\chi}{2}\left(N_{h}
ight)^{2}+rac{1}{1+r_{\ell}}\left[\left(1-
ho
ight)V_{h}^{ss}\left(b_{h}^{\prime}
ight)+
ho\mathbb{E}V_{h}\left(b_{h}^{\prime},\Theta^{\prime},x^{\prime}
ight)
ight]
ight\},$$

subject to the budget constraint.

- That households can map from x into the aggregate variables required for their budget constraints corresponds to our assumption that they are good at *static* general equilibrium reasoning.
 - ▶ However, they are not good at *dynamic* general equilibrium reasoning.
 - Their beliefs about the future are distorted.

Production and Firms

- Dixit-Stiglitz formalization standard in NK model.
 - Final good created by aggregating intermediate goods produced by monopolists.
- Intermediate good firms have sticky prices in the sense of Rotemberg.
- Intermediate firms' problem expressed in recursive form.
- Have same beliefs as households.

Government

- Fiscal policy:
 - Baseline: $G = G_{ss} > \text{fixed for all } r$.
 - Alternative: $G = G_{\ell} > G_{ss}$, $r = r_{\ell}$, $G = G_{ss}$, $r = r_{ss}$.
 - Government uses lump sum taxes to balance budget in each period.
- Monetary policy:

$$R = \max\left\{1, rac{1}{eta} + lpha\left(\pi - 1
ight)
ight\}, lpha > 1$$

• We also consider perturbations on this policy, including forward guidance.

Market Clearing in a Period Learning Equilibrium

- Given $r = r_{\ell}$ and Θ ,
- The vector, x = [C, π], is adjusted to ensure goods, bonds and labor markets clear in a way that is consistent with private sector optimization and government policy.
 - ► The approach is inspired by Eusepi, Gibbs and Preston, 2022.
 - Concept similar to 'Period Equilibrium' in García-Schmidt and Woodford 2019.

Learning Equilibrium

- As long as $r = r_{\ell}$, economy is a sequence of period learning equilibria.
- When $r = r_{ss}$ economy jumps to R > 1 REE steady state.

Is Rational Expectations a Useful Guide for Policy Analysis Under Learning?

• First,

Does learning select one of the (multiple) REE in the ZLB?

Second,

How quickly does convergence occur?

• Third,

- ▶ are predictions of REE about macro stabilization policies robust to learning?
- Related issue: there are also multiple steady state REE's in the NK model (BSGU).
 - > Based on our experiments and the literature, we will focus on the zero inflation steady state.

Multiple REE in ZLB

- Scenario:
 - Economy was in zero inflation steady state up to period 0
 - Unexpectedly, discount rate shock happens and everyone correctly believes that economy goes back to zero inflation steady state with constant probability.
 - ▶ Well known: there are two stationary rational expectations ZLB equilibria.
 - * In our model, can characterize a ZLB equilibrium as a zero of a function of inflation alone, $f(\pi_{\ell}) = 0$.
 - * This function has an 'inverse U', Laffer curve shape.
- Parameter values

$$p = 0.80, r_{\ell} = -0.0015 (-0.6APR), G_{ss} = 0.20, r_{ss} = 0.005 (2.0APR),$$

$$Y_{ss} = N_{ss} = 1, \ \varepsilon = 7, \ \phi = 110, \ \chi = 1.25, \ \alpha = 1.5$$

REE Equilibria in ZLB

- Two ZLB equilibria
 - Bad-ZLB (A) equilibrium: substantial deflation, very high real rate, very low consumption.
 - ► Good-ZLB (B) equilibrium: more modest deflation, reduced consumption and high in real rate.

Does Learning Select One of the Two Equilibria?

- Bad-ZLB equilibrium is locally unstable under learning.
 - ▶ When priors means are centered (priors on variance positive) on Bad-ZLB, you go to Good-ZLB.
- Good-ZLB equilibrium is 'globally' stable under learning.
 - When prior mean of x is centered on steady state, on Good-ZLB or on Bad-ZLB: converge to Good-ZLB.

Experiment #1: Slow Learning in the ZLB

• r drops and G remains unchanged.

- Key results:
 - Economic impact of the shock under learning is small compared with REE.
 - * Learning is **extremely** slow.
 - Learning moves the model in the 'right' empirical direction:
 - ★ addresses 'missing deflation puzzle'.

Intuition: In ZLB there is a Positive Feedback Loop Between Inflation and Inflation Expectations

• Suppose firms and households *expect lower inflation* in the future during ZLB episode.

- Other things the same, firms want to reduce prices now.
- ▶ Households: R = 1 in ZLB, so low inflation expectations \rightarrow real rate high \rightarrow labor supply increased
 - \rightarrow marginal cost of production down \rightarrow inflation down.
- In sum: Households and firms complement each other in creating a positive feedback loop that makes the NK model behave like a 'high-b' economy.

What if we Ignore the ZLB?

- Outside ZLB, Taylor Principle operates to prevent expectations from having a big impact on inflation.
 - > Taylor Principle works to detach inflation from expectations of inflation.
 - It effectively makes b small.
- Suggests that if we ignore the ZLB, so the Taylor principle remains active when *r* falls, then convergence of the learning model to the REE should go more quickly (consistent with Ferrero 2007).

Experiment #2: Fall in r With and Without ZLB

• We do see faster convergence when don't impose the ZLB in Experiment #1, consistent with 'learning principle' intuition.

Experiment #3: Increase in G During ZLB

- Standard result in rational expectations (REE) literature:
 - multiplier on government spending can be very large in the ZLB.
 - * Depends on going to the Good ZLB
 - ★ Bad ZLB not stable under learning.
 - But, large multiplier in REE happens chiefly by raising expected inflation.
 - * If learning is backward-looking, then this inflation expectation channel broken.
- Our finding:
 - ▶ We find that the multiplier under learning is very small, compared to REE.
 - ▶ Rational expectations generates very misleading prediction about the effects of government spending.

Experiment #3: Impact of an Increase in Government Spending

• In the REE ZLB, government purchases have a big effect, by raising expected inflation expectations

• Government purchases do very little in the learning equilibrium.

The G Multiplier In ZLB

• Here is the multiplier, $\frac{dY}{dG}$, directly.

- A huge difference between REE and learning.
- Next, turn on Taylor principle by ignoring ZLB.

The G Multiplier Outside ZLB

Forward Guidance

- Simple representation of forward guidance:
 - Monetary authority announces that when r jumps back up to r_{ss} , R remains at zero for one period.
- REE
 - Forward guidance has huge impact on ZLB equilibrium via cascading effects on expected future inflation.
- Learning
 - > The future interest rate cut does stimulate a little.
 - But, there is little amplification via expected inflation
 - ► No forward guidance puzzle.

Experiment #4: Monetary Versus Fiscal Policy On the Way to the ZLB

- In our experiments with learning, when r falls to r^ℓ < 0, the economy takes some time (one period) to hit a binding ZLB.
- If the monetary authority reacts by pushing the economy into ZLB *immediately*, it moves allocations close to their first best levels.

- Message: potentially, monetary policy can do even *more* than fiscal policy in dealing with a ZLB episode.
 - Requires moving monetary policy very quickly.

Conclusion

- The preceding analysis is a cautionary tale about how REE analysis may convey misleading policy advice:
 - Could encourage fiscal authorities to rely excessively on fiscal policy.
 - Could cause monetary authority to pass up an opportunity to move quickly while R remains > 1.
- The learning principle may suggest other circumstances in which REE delivers conclusions not robust to learning.
- Analysis confirms the wisdom of exploring the implication of replacing REE by alternative micro-founded learning mechanisms (see Gabaix, Angeletos, Fahri, Werning, Ilut, Schneider, Liu, Sastry, Shleifer, Woodford, ...).

Appendix Materials

Period Price and Profit Functions

- Households (and firms) observe $x = \begin{bmatrix} C, \pi \end{bmatrix}$
 - from x (as well as r, G (r)) they are able to deduce the variables needed to define their current-period budget constraint.
- GDP (Y), aggregate employment (N), real wage (w), marginal firm cost (s), profits, taxes net of profits (T):

$$N = Y = (C + G(r))\left(1 + \frac{\phi}{2}(\pi - 1)^2\right)$$

$$w = \chi NC, \ s = (1 - \nu) w, \ R = \max\left\{1, 1 + r^h + lpha \left(\pi - 1
ight)
ight\}.$$

We assume the government issues no debt and finances its expenditures with lump sum taxes:

$$G(r) + \nu w N$$
,

where νwN represents the subsidy paid to intermediate good firms.

Period Price and Profit Functions, cnt'd

• Finally, profits net of taxes implied by x and r are:

$$T = \overbrace{(1-s) \ Y - \frac{\phi}{2} \ (\pi-1)^2 \ (C+G(r))}^{\text{profits for intermediate good producers}} - \overbrace{(G(r) + \nu wY)}^{\text{lump sum taxes}}.$$

• Note: none of these mappings use bond market clearing or the household's intertemporal Euler equation. • Go Back

Cobweb Model

- Model of competitive market and a time lag in production.
 - > John Muth, 'Rational Expectations and the Theory of Price Movements', ECMA, July 1961.
 - Coase and Fowler, 'Bacon Production and the Pig-Cycle in Great Britain', Economica, May, 1935.
- Demand:

$$d_t = m_I - m_p p_t + v_{1t}$$

• Supply decided in period *t* before v_{1t} is observed:

$$s_t = r_l + r_p \mathbb{E}_{t-1} p_t + v_{2t}$$

• Equilibrium, $d_t = s_t$:

$$\overbrace{p_t}^{x_t} = \overbrace{\frac{m_l - r_l}{m_p} - \frac{r_p}{m_p}}^{a} \mathbb{E}_{t-1} p_t + \overbrace{\frac{v_{1t} - v_{2t}}{m_p}}^{\varepsilon_t}$$

Lucas Model

• Aggregate output:

$$q_t = \overline{q} + \pi \left(p_t - \mathbb{E}_{t-1} p_t \right) + \zeta_t$$

• Velocity equation:

$$m_t + v_t = p_t + q_t$$

• Monetary policy:

$$m_t = \bar{m} + u_t.$$

• Substitute second two equations into first, to obtain equilibrium condition:

$$\overbrace{p_t}^{x_t} = \overbrace{\overline{\tilde{m}} - \overline{q}}^{a} + \overbrace{\overline{1 + \pi}}^{b} \mathbb{E}_{t-1}p_t + \overbrace{\overline{u_t + v_t - \zeta_t}}^{\varepsilon_t}$$

Rational Expectations Equilibrium

• Reduced form model:

$$x_t = a + b\mathbb{E}_{t-1}x_t + \varepsilon_t, \ \varepsilon_t \sim E\varepsilon_t = 0, E\varepsilon_t^2, E\varepsilon_t\varepsilon_{t-j} = 0, j \neq 0.$$

• In rational expectations equilibrium, $\mathbb{E}_{t-1}x_t = E_{t-1}x_t$, so

$$x_t = \frac{a}{1-b} + \varepsilon_t$$

• To verify this, note:

$$x_{t} = a + bE_{t-1}x_{t} + \varepsilon_{t} \stackrel{\text{REE}}{=} a + b \underbrace{\overbrace{1-b}^{E_{t-1}x_{t}}}_{a} + \varepsilon_{t}$$
$$= \frac{a}{1-b} + \varepsilon_{t}.$$

Constant-gain learning

• Assume people update their view of μ_{t-1} by constant-gain learning:

$$\mu_t = \mu_{t-1} + \gamma \left(x_t - \mu_{t-1} \right), \tag{1}$$

for $0 < \gamma < 1$.

Now

$$\mu_t - \frac{a}{1-b} = \sum_{j=0}^{t-1} \left(1 - \gamma_b\right)^j \left(\frac{\varepsilon_{t-j}}{1-b}\right) \gamma_b + \left(1 - \gamma_b\right)^t \left(\mu_0 - \frac{a}{1-b}\right),$$

where $\gamma_b = (1 - b) \gamma$,

$$z_t = E\left(\frac{\mu_t - \frac{a}{1-b}}{\mu_0 - \frac{a}{1-b}}\right) = (1 - \gamma_b)^t.$$

Learning principle again

- Again calculate how long it takes to close 2/3 of the initial gap, i.e., calculate, T, the value of t such that z_T ≃ 1/3.
- Suppose $\gamma = 0.5$ and b = 0, 0.5, 0.75, 0.85, .95.

Ь	0	0.5	0.75	0.85	0.95
Т	1.6	3.8	8.23	14.1	4 billion

- Note: speed of convergence is quicker for 'small' values of b than under Bayesian learning.
- But again speed of convergence increases nonlinearly with b. Go Back