The Puzzling Post-Pandemic Labor Market Dynamics

Ayşegül Şahin

Princeton University

55th Annual Conference of the Money, Macro and Finance Society 4-6 September 2024

Based on joint works with Sadhika Bagga, Gadi Barlevy, Richard Crump, Stefano Eusepi, Marc Giannoni, Bart Hobijn, Jason Faberman, Lukas Mann, Gianluca Violante

Post-pandemic labor market

Has the Willingness to Work Fallen during the Covid Pandemic?

Unemployment and Participation

Trend unemployment continues to be low

Reference: Crump, Eusepi, Giannoni and Şahin (2019, 2022)

Unemployment incidence has steadily declined

Reference: Crump, Eusepi, Giannoni and Şahin (2019, 2022)

Two main reasons for the trend decline in unemployment inflows

Grand Gender Convergence

- Increase in female labor force participation from around 47% in 1976 to 60% in 2000.
- As social norms and policies changed in the late 1970s and 1980s, employment relationships of women became more stable. This meant fewer career interruptions and reduced the unemployment inflow rate.

Dual Aging

- In the 1970s, Boomers were in their teens and twenties and had less stable jobs and frequent unemployment spells. This contributed to higher unemployment inflows.
- As Baby Boomers entered their prime ages and settled in more steady jobs in the 1980s and 1990s, their inflow rate into unemployment trended down.
- Moreover, the ongoing decline in firm entry shifted employment to older firms reducing job destruction.

Labor force participation trend predates the COVID-19 Pandemic

CBO trend estimates (2011,2015,2020,2021), ■: Tealbook estimates (backward-looking, Jan 2011 and Jan 2015), *: Aaronson et. al, BPEA 2014 and ▲: from Aaronson et. al. 2006, Aaronson, 2012, VanZandweghe et al. 2012, and Hornstein et. al. 2018.

Reference: Hobijn and Şahin (2021, 2022)

Labor force participation trend predates the COVID-19 Pandemic

CBO trend estimates (2011,2015,2020,2021), ■: Tealbook estimates (backward-looking, Jan 2011 and Jan 2015), +: Aaronson et. al, BPEA 2014 and ▲: from Aaronson et. al. 2006, Aaronson, 2012, VanZandweghe et al. 2012, and Hornstein et. al. 2018.

Reference: Hobijn and Şahin (2021, 2022)

Emphasis on labor force entry/exit dynamics during the pandemic

Participation dynamics more subtle

Flow Origins of Participation: Dec 2023 Monthly observations: seasonally adjusted

- Flows >> Net changes in stocks
 - Large flows in and out of labor force
- Unemployed are less attached than the employed
 - Attachment wedge

Source: Bureau of Labor Statistics

Key Intuition: When someone moves from U to E, they are more likely to remain in the labor force going forward. This simple mechanism (the participation cycle) is the source of procyclicality of participation, not labor force entry and exit.

Reference: Hobiin and Sahin (2021, 2022)

Participation cycle lagged the unemployment cycle as always

Trough to trough LFPR changes decomposed

Monthly observations; seasonally adjusted; cumulative change since unemployment trough; Total

Participation cycle lagged the unemployment cycle as always

Trough to trough LFPR changes decomposed

Monthly observations; seasonally adjusted; cumulative change since unemployment trough; Total

Just a Quick Recovery?

Beveridge Curve exhibited a series of unusual shifts

Pandemic period in historical context

Reference: Barlevy, Faberman, Hobijn, and Şahin (2023)

Reference: Barlevy, Faberman, Hobijn, and Şahin (2023)

Comparison with Recent Recoveries

Unemployment and vacancies

• Substantial shift in vacancies without much change in unemployment

Quit and EE rates

• Lots of reallocation through quits and EE transitions \rightarrow Great Resignation

Matching efficiency, job filling and job finding rates

Match efficiency is unusually low for a strong recovery, depressing filling and finding rates

The rise of telework

(a) February 2020

(b) October 2022 - December 2023

SOC Broad Occupations, 5-digit

SOC Broad Occupations, 5-digit

Sources: CPS Telework Supplement, Dingel & Neiman (2020)

Telework and reallocation

- Workers leave non-teleworkable sectors
- Relative wage losses of TW jobs indicate supply-side driven reallocation

Aggregate variables by teleworkability

Taking stock of time-series evidence

- Some unique features of the post-pandemic labor market recovery:
 - 1. Unemployment recovered very quickly
 - 2. Vacancies surged \Rightarrow massive shift in the Beveridge curve
 - 3. Sharp rise in quits and job-to-job transitions
 - 4. Unusually low aggregate matching efficiency for a recovery
- Recovery from this recession was different, not just faster

A Quantitative Framework

Mortensen & Pissarides

- 1. Frictional labor market with random search \rightarrow coexistence of u and v
- 2. Match-specific productivity \rightarrow endogenous match efficiency

Mortensen & Pissarides

- 1. Frictional labor market with random search \rightarrow coexistence of u and v
- 2. Match-specific productivity \rightarrow endogenous match efficiency
- + Postel-Vinay & Robin
- 3. On-the-job search \rightarrow EE flows
- 4. Bertrand competition for workers \rightarrow wage distribution

Mortensen & Pissarides

- 1. Frictional labor market with random search \rightarrow coexistence of u and v
- 2. Match-specific productivity \rightarrow endogenous match efficiency
- + Postel-Vinay & Robin
- 3. On-the-job search \rightarrow EE flows
- 4. Bertrand competition for workers \rightarrow wage distribution

+ Diamond

5. Sunk entry cost \rightarrow vacancies are a stock \rightarrow quits induce vacancies

Mortensen & Pissarides

- 1. Frictional labor market with random search \rightarrow coexistence of u and v
- 2. Match-specific productivity \rightarrow endogenous match efficiency

+ Postel-Vinay & Robin

- 3. On-the-job search \rightarrow EE flows
- 4. Bertrand competition for workers \rightarrow wage distribution

+ Diamond

5. Sunk entry cost \rightarrow vacancies are a stock \rightarrow quits induce vacancies

+ Rosen + Roy

- 6. Jobs are heterogeneous in whether they offer amenity $(a) \rightarrow$ compensating differential
- 7. Workers are heterogeneous in their preference for amenity $(x) \rightarrow$ sorting & reallocation

Demographics and preferences

- Continuous time
- Continuum of ∞ -lived workers with measure one
- Discount the future at rate r
- Can be employed (e) or unemployed (u)
- Workers value telework which is an amenity provided by a subset of jobs
- Distribution of taste for amenity x across the population $\ell(x)$ (assume $x \in \{0, \bar{x}\}$)
- Linear flow utility for a worker of type x

$$\mathcal{U}(x) = \begin{cases} w + xa & \text{if employed on match with amenity } a \text{ and wage } w \\ b & \text{if unemployed} \end{cases}$$

Jobs and amenities

- Endogenous mass of filled and vacant jobs
- Each job belongs to one of three types $n \in \{0, 1, 2\}$:
 - Non-teleworkable (n = 0)
 - \rightarrow never offers the amenity

$$a(0) = \underline{a}$$

• Teleworkable (passive) (n = 1)

ightarrow does not currently offer the amenity but may offer it in the future

$$a(1) = \underline{a}$$

• Teleworkable (active) (n = 2)

 $\rightarrow~$ offers the amenity

$$a(2) = \overline{a}$$

- Newly created jobs begin their life in state n = 0 or n = 1
- At a Poisson rate, passive TW jobs may upgrade to the active state at a random cost $c \sim F_c(\cdot)$

Entry and production

- A vacant job has value $\Omega_t(n)$ where $n \in \{0, 1, 2\}$
- A fixed share ζ of newly created jobs is teleworkable
- Free entry of jobs upon payment of sunk cost κ :

$$\Omega_t := \underbrace{\zeta \Omega_t(1) + (1 - \zeta) \Omega_t(0)}_{\text{Fourier}} = \kappa$$

Ex-ante value of a vacant job

- Vacancies are a stock:
 - Inflows come from new creation and separations
 - Outflows come from hires and job destruction
- Upon meeting, match productivity y is drawn from the distribution $y \sim F_y(\cdot)$
- After observing *y*, match is formed iff its surplus is positive
- Matches and vacancies are destroyed at exogenous rates δ and δ_v , respectively

Wage protocol and surplus

- Contractual environment based on Postel-Vinay & Robin (2002):
 - 1. Negotiation protocol: firms make take-it-or-leave-it offers to workers
 - 2. Renegotiation only under mutual consent
 - 3. Firms and workers commit to upgrading iff it is surplus-maximizing
- Gross surplus dynamics:

 $(r+\delta)S_t(x, y, n) = Z_t^y y - Z_t^b b + Z_t^x x a(n) + \delta\Omega_t(n)$ +upgrading term + $\partial_t S_t(x, y, n)$, with $S_t(x, y, n) \ge \Omega_t(n)$

- Model is not block-recursive, but allocations can be computed without wages
- Three aggregate shocks: productivity, value of leisure, value of the amenity

Steady-state parameters and corresponding targets

Parameter		Value	Target to match	Target value
Discount rate	r	0.05/12	External	
Elasticity of meeting function	α	0.5	External	
Productivity dispersion	SD(log y)	0.039	Response of u to y shock	
Entry cost	κ	1.89	Meeting rate of unemployed	1.5
Opportunity cost of work	b	1.01	UE rate	0.3
Search effort of employed	S	0.89	EE rate / UE rate	0.07
Separation rate	δ	0.015	EU rate	0.015
Vacancy destruction rate	δ_v	0.33	Share of replacement hires	0.5
Share of pop. with $x = \bar{x}$	$\ell(\bar{x})$	0.5	Barrero, Bloom & Davis (2021)	
Prob. of TW job creation	ζ	0.26	Share of teleworkable empl.	37%
Utility flow from amenity	\overline{X}	0.048	Compensating differential	2.5%
Amenity	<u>a,</u> ā	-0.35, 0.65	Long run response of u to x	0
Parameters of $F_c(c) = \xi_1 c^{\xi_2}$	ξ_1,ξ_2	0.001,4.0	Level + rise in TWA vacancies	0.1,0.1

Model period is one month.

Shocks Estimation

Methodology

- Let $f_{s_i}^d$ be the IRF of variable *d* at horizon *j* with respect to shocks *s*
 - 1. Productivity y
 - 2. Value of leisure b
 - 3. Value of the amenity \bar{x}
- Approximate dynamics of variable d_t assuming additivity with respect to the 3 shocks:

$$d_t = \sum_{s \in \{y, b, \bar{x}\}} \sum_{j=0}^t f^d_{sj}(\varepsilon_{s,t-j})$$

We allow f_{sj}^d to depend on size and sign of the shock.

• Estimate $\{\varepsilon_{st}\}_{t=0}^{T}$ by NLLS using the data counterpart of $\{d_t\}_{t=0}^{T}$:

 $\{u_t, v_t, JFR_t, JFillR_t, MatchEff_t, EE_t, Y_t, w_t\}_{t=2020:01}^{2023:10}$

Estimated paths of y, b and x

Size of x shock vs data on workers' valuation of WFH

Source: Barrero, Bloom and Davis (2021)

Model Fit and Decompositions

Model fit

Decomposition: y

Decomposition: y + b

Decomposition: y + b + x

Beveridge Curve decomposition: y + b + x

- Standard Beveridge curve from y, b
- x-shock generates the vertical shift

Reallocation

• Reallocation : high x workers look for teleworkable jobs and vice versa

Wages

• Shift to remote work has contained wage growth (evidence in Barrero et al., 2022)

Sectoral heterogeneity in the model

Looking ahead

- Understanding the post-pandemic labor market requires paying close attention to
 - shifts in workers' preference
 - on-the-job search
- Mechanism:
 - Amenity valuation shock \rightarrow mismatch \rightarrow quits \uparrow + reallocation
 - Quits \rightarrow vacancies \uparrow
 - Worsening vacancy pool \rightarrow match efficiency \downarrow
- Quantitatively consistent with micro-evidence
- Given that share of remote jobs stabilized, bulk of reallocation has already taken place

References

- 1. Bagga S., Mann L., Şahin A. and G. Violante. "Job Amenity Shocks and Labor Reallocation," 2023.
- 2. Barlevy G., Faberman J., Hobijn B, and A. Şahin. "The Shifting Reasons for Beveridge Curve Shifts," 2023.
- 3. Crump R., Eusepi S., Giannoni M. and A. Şahin. "A Unified Approach to Measuring u^* " Brookings Papers on Economic Activity, Spring 2019.
- 4. Crump R., Eusepi S., Giannoni M. and A. Şahin. "Inflation-Unemployment Trade-off Revisited: *u** in Covid Times," 2022.
- 5. Hobijn B. and A. Şahin. "Maximum Employment and the Participation Cycle," Jackson Hole Symposium, August 2021.
- 6. Hobijn B. and A. Şahin. "Missing Workers and Missing Jobs Since the Pandemic," Boston Fed Employment Conference, 2022.